(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
0(#) → #
+'(x, #) → x
+'(#, x) → x
+'(0(x), 0(y)) → 0(+'(x, y))
+'(0(x), 1(y)) → 1(+'(x, y))
+'(1(x), 0(y)) → 1(+'(x, y))
+'(1(x), 1(y)) → 0(+'(+'(x, y), 1(#)))
+'(+'(x, y), z) → +'(x, +'(y, z))
*'(#, x) → #
*'(0(x), y) → 0(*'(x, y))
*'(1(x), y) → +'(0(*'(x, y)), y)
*'(*'(x, y), z) → *'(x, *'(y, z))
sum(nil) → 0(#)
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *'(x, prod(l))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
0(#) → #
+'(x, #) → x
+'(#, x) → x
+'(0(x), 0(y)) → 0(+'(x, y))
+'(0(x), 1(y)) → 1(+'(x, y))
+'(1(x), 0(y)) → 1(+'(x, y))
+'(1(x), 1(y)) → 0(+'(+'(x, y), 1(#)))
+'(+'(x, y), z) → +'(x, +'(y, z))
*'(#, x) → #
*'(0(x), y) → 0(*'(x, y))
*'(1(x), y) → +'(0(*'(x, y)), y)
*'(*'(x, y), z) → *'(x, *'(y, z))
sum(nil) → 0(#)
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *'(x, prod(l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
*',
sum,
prodThey will be analysed ascendingly in the following order:
+' < *'
+' < sum
*' < prod
(6) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
The following defined symbols remain to be analysed:
+', *', sum, prod
They will be analysed ascendingly in the following order:
+' < *'
+' < sum
*' < prod
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_#:13_2(
n6_2),
gen_#:13_2(
n6_2)) →
*5_2, rt ∈ Ω(n6
2)
Induction Base:
+'(gen_#:13_2(0), gen_#:13_2(0))
Induction Step:
+'(gen_#:13_2(+(n6_2, 1)), gen_#:13_2(+(n6_2, 1))) →RΩ(1)
0(+'(+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)), 1(#))) →IH
0(+'(*5_2, 1(#)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
The following defined symbols remain to be analysed:
*', sum, prod
They will be analysed ascendingly in the following order:
*' < prod
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_#:13_2(
n106070_2),
gen_#:13_2(
0)) →
gen_#:13_2(
0), rt ∈ Ω(1 + n106070
2)
Induction Base:
*'(gen_#:13_2(0), gen_#:13_2(0)) →RΩ(1)
#
Induction Step:
*'(gen_#:13_2(+(n106070_2, 1)), gen_#:13_2(0)) →RΩ(1)
+'(0(*'(gen_#:13_2(n106070_2), gen_#:13_2(0))), gen_#:13_2(0)) →IH
+'(0(gen_#:13_2(0)), gen_#:13_2(0)) →RΩ(1)
+'(#, gen_#:13_2(0)) →RΩ(1)
#
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
The following defined symbols remain to be analysed:
sum, prod
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_nil:cons4_2(
n119750_2)) →
gen_#:13_2(
0), rt ∈ Ω(1 + n119750
2)
Induction Base:
sum(gen_nil:cons4_2(0)) →RΩ(1)
0(#) →RΩ(1)
#
Induction Step:
sum(gen_nil:cons4_2(+(n119750_2, 1))) →RΩ(1)
+'(#, sum(gen_nil:cons4_2(n119750_2))) →IH
+'(#, gen_#:13_2(0)) →RΩ(1)
#
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
sum(gen_nil:cons4_2(n119750_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1197502)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
The following defined symbols remain to be analysed:
prod
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
prod(
gen_nil:cons4_2(
n125723_2)) →
*5_2, rt ∈ Ω(n125723
2)
Induction Base:
prod(gen_nil:cons4_2(0))
Induction Step:
prod(gen_nil:cons4_2(+(n125723_2, 1))) →RΩ(1)
*'(#, prod(gen_nil:cons4_2(n125723_2))) →IH
*'(#, *5_2)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
sum(gen_nil:cons4_2(n119750_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1197502)
prod(gen_nil:cons4_2(n125723_2)) → *5_2, rt ∈ Ω(n1257232)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
(20) BOUNDS(n^1, INF)
(21) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
sum(gen_nil:cons4_2(n119750_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1197502)
prod(gen_nil:cons4_2(n125723_2)) → *5_2, rt ∈ Ω(n1257232)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
(23) BOUNDS(n^1, INF)
(24) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
sum(gen_nil:cons4_2(n119750_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1197502)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
(26) BOUNDS(n^1, INF)
(27) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
*'(gen_#:13_2(n106070_2), gen_#:13_2(0)) → gen_#:13_2(0), rt ∈ Ω(1 + n1060702)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
(29) BOUNDS(n^1, INF)
(30) Obligation:
Innermost TRS:
Rules:
0(
#) →
#+'(
x,
#) →
x+'(
#,
x) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
*'(
#,
x) →
#*'(
0(
x),
y) →
0(
*'(
x,
y))
*'(
1(
x),
y) →
+'(
0(
*'(
x,
y)),
y)
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
sum(
nil) →
0(
#)
sum(
cons(
x,
l)) →
+'(
x,
sum(
l))
prod(
nil) →
1(
#)
prod(
cons(
x,
l)) →
*'(
x,
prod(
l))
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
*' :: #:1 → #:1 → #:1
sum :: nil:cons → #:1
nil :: nil:cons
cons :: #:1 → nil:cons → nil:cons
prod :: nil:cons → #:1
hole_#:11_2 :: #:1
hole_nil:cons2_2 :: nil:cons
gen_#:13_2 :: Nat → #:1
gen_nil:cons4_2 :: Nat → nil:cons
Lemmas:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
gen_nil:cons4_2(0) ⇔ nil
gen_nil:cons4_2(+(x, 1)) ⇔ cons(#, gen_nil:cons4_2(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n6_2), gen_#:13_2(n6_2)) → *5_2, rt ∈ Ω(n62)
(32) BOUNDS(n^1, INF)